
 

 

 

 
 
 

Quantum City Challenge 
Applying quantum technology and solutions to Alberta’s energy industry 

 

  



 

 

About the Quantum City Challenge 

Quantum City is hosting an online challenge to demonstrate/assess the ability to solve problems in Alberta’s 
energy industry with quantum technology. Quantum City is working with Amazon Web Services (AWS) to 
facilitate this challenge and has received sponsorship from two Alberta-based energy organizations to 
demonstrate the applicability of quantum solutions for modern energy industry organizations.  

Approach 
We understand that quantum computing is a new technology and that currently, available quantum computers 
are severely restricted by limitations on number of qubits, connectivity, error rates, and so on. The scale of the 
problem presented in this use case is far beyond what is possible for quantum computers today. This 
competition intends to solicit new ideas of how to apply future quantum computers to solving such industrial 
(even if simplified) problems. For this reason, we welcome submissions including any of the below: 

• Proof of concept solutions, on a smaller and perhaps simplified problem, including a formulation and/or 
implementation and/or resource estimates, solved on a currently available quantum simulator and/or 
actual quantum device.  

• Hybrid quantum-classical solutions to the full problem or a subset of it, including formulation and/or 
implementation and/or resource estimates, solved using a currently available simulator and/or actual 
quantum device, or using a stand-in for a quantum computer to solve subproblems of a type that 
quantum computers might one day solve efficiently, such as SAT, MaxSAT, MIP, etc.  

Purpose 

ATCO proposes the following problem statement for the Quantum City Challenge and welcomes efficient and 
novel quantum solutions for smart charging of passenger electric vehicles (EVs). 

Background 

ATCO remains committed to sustainability initiatives and the implementation of smart technologies aimed at 
assisting customers in effectively managing their energy requirements and monitoring usage. Our commitment 
to these endeavors is well-documented in our annual review and sustainability reportsi,ii.   

We are interested in exploring the current capabilities of quantum computing and gaining insight into its future 
potential. Our SpaceLab team has formulated the following hypothetical test case to support this exploration of 
quantum computing and develop better solutions for sustainability issues. 



 

 

High-Level Problem Statement – Smart Scheduling of EV 
Charging  

For the purposes of the Quantum City Challenge, we envision a hypothetical/mock city (the “city”) with the 
following characteristics: the city has experienced substantial adoption of EVs; the city is a densely populated 
urban area where access to home charging is relatively limited, so the development of public charging 
infrastructure is necessary to facilitate EV charging, and the city has determined it will build an independently 
powered hub of publicly available EV charging stations (the “charging hub”) to meet the charging needs of EV 
owners. 

 

Figure 1: A visual depiction of the city with the charging hub catering to the needs of the EV owners. 

The city does not yet know how it will avoid exceeding the electricity supply constraints of the charging hub, but 
knows that it will need to balance the charging hub supply and the EV charging demand, the charging time 
preferences and the schedule of each EV owner. The smart scheduling of the EV charging problem (the “city 
problem” and a “combinatorial optimization problem") is closest to the mathematically defined weak NP-hard 
spaceiii, and the city is interested in exploring whether quantum computing may provide advantages over classical 



 

 

computingiv. The city welcomes quantum solutions that demonstrate the potential of better performance of 
quantum approaches vs. classical state-of-the-art solutionsv. 

 

Figure 2: A busy EV charging station with arriving, charging and departing EVs with varying charging levels. 

Previous Classical Approaches 

Similar optimization problems have been approached in multiple ways previouslyvi,vii,viii,ix.  Even within the relaxed 
constraints of the city's problem formulation provided in this problem statement, the combinatorial optimization 
problem remains a formidable challenge for quantum approachesx. Most classical algorithms tend to be 
computationally expensive, with their computational times scaling exponentially with the number of variables in 
the model. 

 

Figure 3: The classical scheduling algorithms in comparison with Model Predictive Control being the adaptive or smart scheduling 
algorithm. The smart scheduling algorithm shows better performance by meeting the maximum demand in theory compared to other 

traditional algorithmsix. 

Constrained Infrastructure - Ideal EVSE

Transformer Capacity (kW)

First-Come First-Served
Earliest Deadline First
Least Laxity First
Round Robin
Model Predictive Control
Offline Optimal

0 20 40 60 80 100

0

20

40

60

80

100



 

 

The city’s problem has been intentionally simplified to be solvable by a limited number of qubits, with the 
assurance that classical optimization solutions are readily accessible. Models for scheduling charging in classical 
computing exist in the literature, have undergone a few pilot tests and commercial products have been released 
as wellv,xi,xii.  For the purposes of the Quantum City Challenge, we will consider Model Predictive Control (see Figure 
3) – or a similarly performing solution to be the state-of-the-art classical solution.  

Solution Requirements 

Each quantum solution proposed for the city problem must indicate how it compares against at least one of the 
classical models referred to in the Previous Classical Approaches section above. The solution metrics should 
include the computational time and optimization accuracy metrics, total energy demands met, a graph showing 
the hourly energy delivered throughout the day, along with varying levels/parameters of optimization. We expect 
details about the hardware usage, the quantum noise measured, and error-related specifics observed so that we 
can gain a deep understanding of how each solution uniquely addresses quantum capabilities for optimization 
problems like the city’s problem. 

We observe that some studies offer potential applications for quantum computing in sustainability-related  
areasvi-x, but note that at this early stage in the development of quantum computing, the advantages provided by 
quantum computing, in comparison to classical algorithms, for solving optimization problems are unclear. Each 
quantum solution proposed must include a discussion about prospective advantages of future quantum 
computers for solving optimization problems of this type.  

Data Sources 

The city has provided all the necessary information for the participants, including the mathematical problem 
formulation, the mock datasets and the precise optimization objective functions, which form the “Detailed 
Problem Statement” section. The mock scenario and data have been generated using Statistics Canada data and 
other publicly available data sourcesxiii,xiv,xv,xvi,xvii,xviii. 

Technical Glossary: 
For participants’ reference, the city provides the following glossary. If participants are interested in more detailed 
information about terms used in the electricity industry, they can refer to the referenced materialxix. These terms 
are used in the Detailed Problem Statement that follows: 

• Ampere (A): a unit of measure of electric current. An ampere is equal to an electric current flow of one 
coulomb per second. 



 

 

• Charge: denotes the energy requested by an EV owner. 
• Charging variables: denotes the electric current and the pending electric energy delivered from the 

charger to the EV’s batteries, at a given time-step. 
• Charging hub: the city’s independently powered charging hub comprised of the charging stations. 
• Direct Current Fast-Chargers: are EV chargers that use a 480 Volt system. These chargers can charge an 

EV's battery to 80% in 30 minutes. Also known as Level 3 chargers.  
• Electric current: rate of flow of the electric charge going from the charger to the EV.  
• EV: passenger electric vehicle. 
• Energy: electrical energy is energy stored in an electric field or transported by an electric current. 
• KiloWatt (kW): a thousand Watts. 
• KiloWatt-hour (kWh): a thousand Watt-hours. 
• Level 2 chargers: EV chargers that offer higher-rate AC charging through 240V or 208V electrical service, 

and are common for home, workplace, and public charging. These chargers can charge an EV's battery 
to 80% in 3-10 hours. 

• MegaWatt-hour (MWh): a million (106) Watt-hours. 
• Power: the rate at which the electric circuit can transfer electrical energy. It is equal to the product of 

electric current and voltage. 
• The city: hypothetical city in this problem statement. 
• Total load: the hourly cumulative energy delivered by the charging hub for all the EVs. 
• Voltage: the pressure that causes the electrons and thereby electric current to flow through a circuit.  
• Volt (V): a measure of voltage. One volt is the difference of potential energy that drives one ampere of 

electric current. 
• Watt (W): a unit of power. One watt is equal to one joule per second and is the same as the power in an 

electric circuit with a potential difference of one volt and the electric current of one ampere. 
• Watt-hour (Wh): a unit of electrical energy. One Watt-hour is equivalent to the energy used/transferred 

at a power of one Watt in one hour. 

Detailed Problem Statement:  
The city currently has a total of 25,000 EVs and the public charging hub introduced previously. The city has 
planned the details of the charging hub and their respective charging capacities based on the assumptions 
below. 

It is important to note that the city’s problem formulation includes certain simplifying assumptions. For 
instance, the city assumes that the EVs are personal vehicles primarily used for work commutes and is not 
interested in exploring charging for commercial vehicles. The city also assumes a uniform energy pricing 
structure for all hours of charging, with no demand pricing (an additional charge based on maximum power 
draw). 



 

 

Additionally, the city is not interested in: i) any consideration of vehicle-to-grid (or V2G) functionality; ii) 
distribution system losses, equipment impacts, or congestion; or iii) complexities related to three-phase 
charging. Consequently, the city assumes that the public charging hub exclusively offers Level 2 chargers, with 
the absence of direct current fast chargers.  

The Demand: 

1) Based on the city’s census data, the total number of EVs commuting for the employed labor force 
(excluding carpooling and public transiters) is 25,000 with an average one-way commute time of 27.70 
mins.  

2) The city uses as a working assumption an average EV efficiency of approximately 0.2 kWh per kilometer 
and an average driving speed of approximately 50 kilometers per hour. This results in an estimated 
energy requirement of 4.618 kWh for an average one-way commute for each EV. Therefore, the 
expected daily two-way commute requires approximately 9.236 kWh. 

3) With an average EV battery capacity of 50 kWh, each commute consumes on average one-tenth of a 
full battery chargexvii. Consequently, each EV will require a recharge approximately every 5 days. 
Assuming an equal distribution of charging needs, one-fifth of the commuters (5,000) charge their 
vehicles daily. Considering that some EVs may need minimal top-ups (2,000 per day), a total of 7,000 
EVs are expected to come to the hub for charging every weekday. To account for any unforeseen 
demand or accelerated battery drain resulting from winter weather, the city assumes a consistent 
influx of 7,000 EVs seeking a charge, even during weekends. 

4) The maximum daily energy requirement can be calculated as follows: 7,000 EVs x 50 kWh = 350,000 
kWh or 350 MWh. If the charging is evenly distributed throughout the day, there would be an 
additional load of 14.5 MWh per hour. It is important to note that this scenario represents an ideal 
situation, as real-time demand tends to be higher during the 8 am to 6 pm window and lower after 6 
pm, as explained under (6). 

The Supply: 

5) Based on the requirements gathered above, the city’s charging hub is designed with 30 charging 
stations. Each charging station is equipped with 100 Level 2 charging ports. It is worth noting that Level 
2 chargers have the capability to deliver up to 20 kW, which is the upper bound on supply from each 
charging port. 

6) The city utilized the arrivals data from the ACN-Datasetxv (see Figure 4) to calculate hourly demand, 
which was then scaled up to account for 7,000 EVs (comprising 5,000 EVs requiring a full charge and 
2,000 requesting top-ups). We have provided the hourly arrival numbers for charging in the provided 
file (EVArrival_time.xlsx), for weekdays and weekends in separate tabs.  

 



 

 

For the full charge requests, on weekdays, the average available charging time is assumed to be 6 hours, while on 
weekends, it is assumed to be 4 hours.  For top-up requests, consider a charging time of only one hour on both 
weekdays and weekends. Given that the charging time typically ranges between 4 to 6 hours, the city recommends 
an optimization horizon of greater than 6 and less than 12 hours. 

 

Figure 4: Graphs showing the arrival time distributions of EVs over the duration of 24 hours from the referenceix. 

Mathematical constraints: 

Consider a consistent voltage of 240V for the Level-2 chargers, with electric current varying between 0 and 64A. 
This configuration results in a maximum power output of 15.36 kW. 

Let 𝑟!(𝑡") ∈ 𝜌, ∀	𝑖, 𝑡" be the electric current at which the 𝑖th EV will be charged at time 𝑡". Here, 𝜌 represents the 
set of allowed, discrete charging electric currents. For Level-2 chargers, industry standard defines the set 𝜌 as 
{8, 16, 32, 48, 64} A. Time is discretized into steps of size ∆𝑡 (=15 minutes or 30 minutes), such that each discrete 
time-step is denoted by 𝑡", where 1 ≤ 𝑘 ≤ 𝑛. Therefore, 𝑛 is the number of time steps in the optimization horizon, 
which has a total duration of 𝑛Δ𝑡. The first time step of the optimization horizon starts at 𝑡# and the final time 
step of the optimization horizon starts at 𝑡$. For convenience, 𝑇 will denote the end time of the optimization 
horizon, so that 𝑇 = 𝑡$ + Δ𝑡. 

As a check to ensure that the supply from one charging port would meet the maximum demand of one EV within 
6 hours: an EV requires 50 kWh for a full charge, and the maximum draw from a port is 15.36 kW (=64A*240V), 
indicating that in 6 hours, it should deliver approximately 90 kWh, nearly double the required amount.  



 

 

The maximum number of EVs requiring a full charge at any given time is less than 2,500 and those requiring top-
ups of 10kWh are less than 400. This ensures that the available number of ports (3,000) exceeds the maximum 
number of ports demanded at any given time. The requested charge for each EV is denoted by 𝑒!  and the adjusted 
remaining charge at the beginning of each time-step is 𝑒!(𝑡"), where 𝑘 is the time-step index.  

The city requires the EVs to always be in a state of charging from when the EV plugs in until its charging demand 
is met: 

𝑟!(𝑡") ∈ 𝜌	𝑖𝑓	𝑒!(𝑡") > 0, {0}	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

This constraint helps prevent contactor wear in the EV charging ports.  

The set 𝜈%!  denotes the active EVs plugged in for charging at a given 𝑡𝑘	(𝜈%!  will need to be updated at each time-
step) and the quantum algorithm should solve for the set of electric currents at which each EV needs to be 
charged: 𝑟!(𝑡"), 𝑖 ∈ 𝜈%!  over the optimization horizon. While the optimization horizon is fixed, please note that 
the available charging time (𝜂!) for each EV is different. For concreteness, if we denote the arrival time of EV 𝑖 as 
𝜏!'((!)'*   then the end of the available charging time is denoted by 𝜏!"#$ =		 𝜏𝑖𝑎𝑟𝑟𝑖𝑣𝑎𝑙 + 𝜂!. For full charge requests, 
𝜂!  must be taken as 6 hours on weekdays, 4 hours on weekends and 1 hour for top-ups on any day as mentioned 
in the Supply section.  

As an example, consider an optimization horizon of 6 hours starting at 𝑡1 = 12: 00	pm, and ending at  
𝑇 = 6: 00	pm. For each EV requesting a full charge, the charging end time is given by:  
𝜏!1$2 =		 𝜏!'((!)'* + 6	ℎ𝑜𝑢𝑟𝑠. Now consider the EV’s that arrived earlier between 7: 00	am and 11: 00	am that 
requested a full charge. For an EV with 𝜏!'((!)'* = 7: 00	am the charging end time will be 	
𝜏!"#$ = 7: 00	am + 6	ℎ𝑜𝑢𝑟𝑠 = 1: 00	pm.	Therefore, when the first time-step of the optimization horizon begins 
at 12: 00	pm that EV will be counted in 𝜈%! 	and have 1 hour more to be charged. Consider ∆𝑡 = 0.5	ℎ𝑜𝑢𝑟 and at 
the third time-step starting at 1: 00	pm, the EV that started charging at 7: 00	am, will be removed from 𝜈%!, while 
the EVs that started charging between 8: 00	am and 12: 00	pm will still be included in 𝜈%! .	As demonstrated, 𝑡1 

and 	𝑇 are fixed for an optimization horizon, but 𝜏!'((!)'*  and 𝜏!"#$can be outside the time limits of the 
optimization horizon and are different for each EV.  

During each optimization, the quantum algorithm must solve for the optimization variables (𝑟̂) for all time-steps 
within the optimization horizon. The algorithm needs to update the time-step index (𝑘) as time-steps increase and 
update the pending energy requested (𝑒!(𝑡")) based on the cumulative charging completed until the 𝑘th time-
step:  

𝑒!(𝑡") = 	 𝑒! −	O𝑟!P𝑡3Q ∗ 𝑉 ∗ P𝑡3 − 𝑡34#Q, 𝑖	 ∈ 𝜈%" 	, 𝑉 = 240	𝑣𝑜𝑙𝑡𝑠		
"
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A sample pending charge calculation at the 𝑘th time-step using the above equation: Assume the 𝑖th EV requests a 
full charge: 𝑒!  = 50 kWh and ∆𝑡 = 30 minutes (0.5 hour). At 𝑘=7, if the algorithm used 32A to charge the EV for the 
past 3 hours: the EV will have been charged for 23.04 kWh (=240V*32A*3h) and so the pending charge 𝑒!(𝑡7) 
would be 26.96 kWh (=50-23.04kWh). The quantum solution must solve for 𝑟̂ for the 𝑘th time step and update the 
pending energy 𝑒!(𝑡"), and similarly for the succeeding time steps. In essence, the solution would provide the 
optimized charging variables (both the electric charging current and the pending energy). This iteration should 
continue till the departure time of the EV.  

𝑟!(𝑡") ∈ 𝜌, 𝑡" <	𝜏!1$2 , 𝑖 ∈ 𝜈%! 		 

𝑟!(𝑡") = 0	,						𝑡" ≥	𝜏!1$2 , 𝑖 ∈ 𝜈%! 	 

& 𝑟𝑖'𝑡𝑗( ∗ 𝑉 ∗ ∆𝑡
𝑘

𝑗=0

		 ≤ 	 𝑒𝑖,			𝑖	 ∈ 𝜈𝑡𝑘 	, 𝑉 = 240	𝑣𝑜𝑙𝑡𝑠		 

The constraints mentioned above serve several purposes: they guarantee the EVs to always be in a state of 
charging; prevent EVs from being charged beyond their departure times; and cap the total charging at the 
requested amount (50 kWh for full charge requests and 10kWh for top-up requests).  

Objective functions: 

The city has selected key objective functions (functions to be optimized) from previous workvi - xii. However, 
participants are encouraged to modify and experiment with the weights and parameters of each objective 
function.  

Note: At the start of every optimization horizon, 𝑡1	and 𝑇 would need to be updated. As an example, consider an 
optimization horizon of 7 hours starting at 𝑡1 = 9: 00	am, and ending at  𝑇 = 4: 00	pm. Once 𝑟̂ is determined 
for the optimization horizon ranging between 9: 00	am and	4: 00	pm, the next optimization horizon would be 
updated as ranging between 𝑡1 = 4: 00	pm and 𝑇 = 11: 00	pm. With arriving and departing traffic of EVs 
varying within any optimization horizon considered, the EVs plugged in for charging (𝜈%!) at every time step (𝑡𝑘) 
would vary and need appropriate updates.  

The initial objective is to incentivize the rapid charging of all vehicles by maximizing the following objective 
function (QC = quick charging):  

𝑈<=(𝑟̂) ∶= 	O
𝑇 − 𝑡"
𝑇 − 𝑡#

O 𝑟!(𝑡")
!∈?$!

$

"5#

 



 

 

The prefactor yields a linear reduction in reward as energy delivery extends over time – the prefactor is 1 for 
𝑘 = 1 and drops down to 1/𝑛	for 𝑘 = 𝑛. This mechanism encourages the charging hub to deliver energy as 
quickly as possible, which helps free capacity for future EV arrivals. 

The second objective function is focused on fulfilling EV owners' energy charging requirements within the 
available charging times, by maximizing the following expression (NC = non-completion penalty): 

𝑈@=(𝑟̂) ∶= 	−[O |(O𝑟!(𝑡") ∗ 𝑉 ∗ ∆𝑡 −	𝑒!

$

"5#

)|A
!B?$!
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When the value of 𝑝 is set to 1, it indicates that there is no preference among EVs when it comes to charging 
priority. However, if 𝑝 is increased to a value greater than 1, it results in the prioritization of EVs with higher 
energy requests (𝑒!) and shorter available charging times. To experiment with this objective, the 2,000 EVs 
requesting top-ups can randomly request any amount of energy between 0 and 50 kWh (instead of the set 
10kWh). This objective function should demonstrate the prioritization based on the descending order of charge 
requests. 

To minimize the total load variations, we define the net load for a given time step as: 

𝑁(𝑡") ≔ 	 O 𝑟!(𝑡")
!∈?$!

 

such that the maximization of the following objective function serves to minimize total load variations (LV = load 
variations): 

𝑈CD(𝑟	̀): = 	−	O𝑁(𝑡")E
$

"5#

	 

If the participants are interested in minimizing the total load, a linear net load summation would be the 
minimization objective. Imposing a strict upper bound constraint on the charging variables can also yield a 
similar effect (max(𝜌) = 32	A or power equivalent, instead of 64 A).  

The city suggests to aggregate the three objective functions (for example, as a weighted sum) to create an 
optimization objective that seeks to maximize the distribution of EV charging, while also ensuring that the EVs are 
charged within their available charging times and with the requested charging energy. It is worth noting that this 
optimization objective may not necessarily yield unique solutions, and that is acceptable. If the goal is to steer 
towards unique solutions, there are regularization techniquesix that could help, although they are not obligatory. 



 

 

For those interested, please refer to the ACN simulator paper for insights into the classical algorithm, which may 
assist in formulating the quantum optimization setupix. 

A demonstration of the above algorithm is contrasted against a conventional charging situation below, as an 
example. The area under each color contour stays the same between the two graphs (the total energy delivered 
to each EV). 

 

Figure 5: Charging schedule of five EVs, with delivered energy (kWh) on the y-axis and time (hours) of charging on the x-axis. This depicts 
adaptive charging to maximize the charging spreadix. 

Bonus Points:  
Novel quantum approaches that demonstrate the ability to handle more complex scenarios than those described 
in the Detailed Problem Statement will be rewarded. Examples of these complexities may include optimizing 
within tighter charging constraints (upper limit of 32 A instead of 64 A), satisfying the demand with fewer charging 
stations and ports, and formulating improved objective functions to enhance optimization. 

As noted above, the Detailed Problem Statement and the accompanying mathematical formulation have been 
intentionally simplified, featuring certain assumptions and basic objective functions for optimization. However, 
we strongly encourage participants to explore and experiment with the information provided in order to devise 
more effective quantum optimization methods capable of excelling under more realistic constraints. There are no 
limitations on the creative approaches participants may employ to address this challenge. 
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